Vibhor Pandharea, Elisa Negrib, Lorenzo Ragazzinib, Laura Cattaneoc, Marco Macchib, and Jay Leed
aDept. of Mechanical Engineering, Indian Institute of Technology Indore, India
bDept. Management, Economics and Industrial Engineering, Politecnico di Milano, Italy
cLIUC, Universita ` Carlo Cattaneo, Castellanza, Italy
dDept. of Mechanical Engineering, University of Maryland College Park, USA
For more information about this article and related research, please contact Prof. Jay Lee.
Abstract:
Technological advancements are leading to a world where digital twins will become integral to manufacturing operations management. While wide-ranging applications of digital twins are being researched, robust production scheduling remains an enduring challenge, especially considering the numerous sources of uncertainty in a complex manufacturing system that can affect the validity of the obtained solution. Thus, the article proposes a Prognostics and Health Management (PHM)-enabled digital twin framework to perform job scheduling for a flow shop scheduling problem considering real-time equipment health state. The framework combines the adoption of a Genetic Algorithm optimizer with data-driven modelling leveraging algorithms like Principal Component Analysis and models like Discrete Event Simulation with the purpose to solve the engineering task of scheduling at hand. Building on such a technological blend, the framework incorporates the degradation and fault detection and diagnosis of failure modes across multiple components. The effect of degradation and faults on job processing times is learned as a distribution from the field data. The proposed framework is then validated in a laboratory environment where degradation is produced by inducing degradation and faults in the equipment. By means of various experiments, the optimized makespan is compared for the output schedules in different configurations. When equipment is degraded, production scheduling with PHM-enabled field-synchronized digital twin results in better makespan estimation, if compared to the digital twin without PHM. This shows the superiority of the framework in terms of more realistic makespan estimations, which finally corresponds to improved production schedule optimization, sensitive also to degraded states.
This article is available online here and to CALCE Consortium Members for personal review.