IEEE Access, Vol.8, April 2020, DOI: 10.1109/ACCESS.2020.2991576

Multi-Objective Optimization Design of a Notch Filter Based on Improved NSGA-II for Conducted Emissions

Lu Zhang1, Hongjuan Ge1, Ying Ma1, Jianliang Xue1, Huang Li1 and Michael Pecht2
1 School of Mechanical Engineering, University of Jinan, Jinan, 250022, China
2 Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA


This paper develops an improved non dominated sorting genetic algorithm II (NSGA-II) based on objective importance vector γ , abbreviated as γ -NSGA-II. Different importance levels for the multiple objectives are incorporated in the objective importance vector, which is applied to determine the individual selection of sorting individuals in the critical layer. And such an individual selection strategy is developed to the NSGA-II algorithm in order to obtain the optimized solution for a task which has multiple objectives with different importance. The differences between the γ -NSGA-II algorithm and the traditional NSGA-II algorithm are discussed in detail. A notch filter is designed for the conducted emission suppression of a transformer rectifier unit (TRU) used in C919 flight testing, and then the parameters optimization design of a notch filter is discussed and conducted based on the γ -NSGA-II algorithm. The non-linear relationship between the filter’s parameters and the suppression effect of the conducted emission is also discussed with the help of an electromagnetic compatibility (EMC) evaluation model based on a back propagation (BP) neural network. The experimental results show that the optimized design of the notch filter is effective and the improved γ -NSGA-II algorithm be more specific.

This article is available online here.

[Home Page] [Articles Page]
Copyright © 2020 by CALCE and the University of Maryland, All Rights Reserved