IEEE Transactions on Power Electronics, Vol. 32, No. 8, August 2017

A Review of Prognostic Techniques for High-Power White LEDs

Bo Suna, Xiaopeng Jiangb, Kam-Chuen Yungc, Jiajie Fand, and Michael Pecht e
a Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
b School of Reliability and Systems Engineering, Beihang University, Beijing, China
cDepartment of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
dCollege of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
e CALCE, Center for Advanced Life Cycle Engineering, Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20740, USA


High-power white light-emitting diodes (LEDs) have attracted much attention due to their versatility in a variety of applications and growing demand in markets such as general lighting, automotive lamps, communications devices, and medical devices. In particular, the need for high reliability and long lifetime poses new challenges for the research and development, production, and application of LED lighting. Accurate and effective prediction of the lifetime or reliability of LED lighting has emerged as one of the key issues in the solid-state lighting field. Prognostic is an engineering technology that predicts the future reliability or determines the remaining useful lifetime of a product by assessing the extent of deviation or degradation of a product from its expected normal operating conditions. Prognostics bring benefits to both LED developers and users, such as optimizing system design, shortening qualification test times, enabling condition-based maintenance for LED-based systems, and providing information for return-on-investment analysis. This paper provides an overview of the prognostic methods and models that have been applied to both LED devices and LED systems, especially for use in long-term operational conditions. These methods include statistical regression, static Bayesian network, Kalman filtering, particle filtering, artificial neural network, and physics-based methods. The general concepts and main features of these methods, the advantages and disadvantages of applying these methods, as well as LED application case studies, are discussed. The fundamental issues of prognostics and photoelectrothermal theory for LED systems are also discussed for clear understanding of the reliability and lifetime concepts for LEDs. Finally, the challenges and opportunities in developing effective prognostic techniques are addressed.

This article is available online here and to CALCE Consortium Members for personal review.

[Home Page] [Articles Page]
Copyright © 2016 by CALCE and the University of Maryland, All Rights Reserved