Yunhan Huang, Michael Osterman and Michael Pecht
Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA
Abstract:
Radio Frequency Micro El
ectromechanical Systems (RF
MEMS) has emerged as one of the most promising front
runners in wireless components
market because of their high
linearity, high isolation, ultra-low power consumption, and
the capability of integrating with integrated circuits for
portable wireless communication devices. However, their
widespread application in commercial areas is hampered by
the relatively poor reliability performance during long-term
usage. Among the failure mechanisms of RF MEMS, stiction induced by the charge accumulation in the dielectric layer is
the predominant one, accounting for most of the failed
components. However, the orig
in of the accumulated charge,
its properties and distribution, and its adverse effect on
device's electrical performance has not yet been fully
understood.
In this paper, we propose the design, realization,
characterization, and reliability test of a novel RF MEMS
capacitive switch which has a high RF performance and low
fabrication cost with a capability of predicting its state of
health for various applications from phase shifters to tunable
antennas. The key characteristic of our design is the
introduction of Prognostics and Health Management (PHM)
using non-intrusive monitoring method, which allows us to
calculate the remaining useful life of our RF MEMS
capacitive switches and provide a warning before its onset of
failure. We overstress the device using two methods:
electrostatic discharge (ESD) and operational voltage
waveform. We discovered the difference of RF MEMS
behavior and lifetime. We also present the effect of driving
voltage polarity on the lifetime of RF MEMS.
Complete Article is available from the publisher and to CALCE consortium members.
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.