Jiajie Fan, K. C. Yung, and Michael Pecht, Fellow, IEEE
Abstract:
Recently, high-power white light-emitting diodes (LEDs) have attracted much attention due to their versatility in applications and to the increasing market demand for them. So great attention has been focused on producing highly reliable LED lighting. How to accurately predict the reliability of LED lighting is emerging as one of the key issues in this field. Physics of failure- based prognostics and health management (PoF-based PHM) is an approach that utilizes knowledge of a product's life cycle loading and failure mechanisms to design for and assess reliability. In this paper, after analyzing the materials and geometries for high-power white LED lighting at all levels, i.e., chips, packages and systems, failure modes, mechanisms and effects analysis (FMMEA) was used in the PoF-based PHM approach to identify and rank the potential failures emerging from the design process. The second step in this paper was to establish the appropriate PoF-based damage models for identified failure mechanisms that carry a high risk.
Index Terms—Light-emitting diode (LED) lighting,
Full text is available from publisher and to the CALCE Consortium Members.
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.